Shortcuts

Source code for tllib.ranking.leep

"""
@author: Yong Liu
@contact: liuyong1095556447@163.com
"""

import numpy as np

__all__ = ['log_expected_empirical_prediction']


[docs]def log_expected_empirical_prediction(predictions: np.ndarray, labels: np.ndarray): r""" Log Expected Empirical Prediction in `LEEP: A New Measure to Evaluate Transferability of Learned Representations (ICML 2020) <http://proceedings.mlr.press/v119/nguyen20b/nguyen20b.pdf>`_. The LEEP :math:`\mathcal{T}` can be described as: .. math:: \mathcal{T}=\mathbb{E}\log \left(\sum_{z \in \mathcal{C}_s} \hat{P}\left(y \mid z\right) \theta\left(y \right)_{z}\right) where :math:`\theta\left(y\right)_{z}` is the predictions of pre-trained model on source category, :math:`\hat{P}\left(y \mid z\right)` is the empirical conditional distribution estimated by prediction and ground-truth label. Args: predictions (np.ndarray): predictions of pre-trained model. labels (np.ndarray): groud-truth labels. Shape: - predictions: (N, :math:`C_s`), with number of samples N and source class number :math:`C_s`. - labels: (N, ) elements in [0, :math:`C_t`), with target class number :math:`C_t`. - score: scalar """ N, C_s = predictions.shape labels = labels.reshape(-1) C_t = int(np.max(labels) + 1) normalized_prob = predictions / float(N) joint = np.zeros((C_t, C_s), dtype=float) # placeholder for joint distribution over (y, z) for i in range(C_t): this_class = normalized_prob[labels == i] row = np.sum(this_class, axis=0) joint[i] = row p_target_given_source = (joint / joint.sum(axis=0, keepdims=True)).T # P(y | z) empirical_prediction = predictions @ p_target_given_source empirical_prob = np.array([predict[label] for predict, label in zip(empirical_prediction, labels)]) score = np.mean(np.log(empirical_prob)) return score

Docs

Access comprehensive documentation for Transfer Learning Library

View Docs

Tutorials

Get started for Transfer Learning Library

Get Started

Paper List

Get started for transfer learning

View Resources