Shortcuts

Source code for tllib.vision.datasets.pacs

from typing import Optional
import os
from .imagelist import ImageList
from ._util import download as download_data, check_exits


[docs]class PACS(ImageList): """`PACS Dataset <https://domaingeneralization.github.io/#data>`_. Args: root (str): Root directory of dataset task (str): The task (domain) to create dataset. Choices include ``'A'``: amazon, \ ``'D'``: dslr and ``'W'``: webcam. download (bool, optional): If true, downloads the dataset from the internet and puts it \ in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a \ transformed version. E.g, :class:`torchvision.transforms.RandomCrop`. target_transform (callable, optional): A function/transform that takes in the target and transforms it. .. note:: In `root`, there will exist following files after downloading. :: art_painting/ dog/ *.jpg ... cartoon/ photo/ sketch image_list/ art_painting.txt cartoon.txt photo.txt sketch.txt """ download_list = [ ("image_list", "image_list.zip", "https://cloud.tsinghua.edu.cn/f/add42cc3859847bc988c/?dl=1"), ("art_painting", "art_painting.tgz", "https://cloud.tsinghua.edu.cn/f/4eb7db4f3eec41719856/?dl=1"), ("cartoon", "cartoon.tgz", "https://cloud.tsinghua.edu.cn/f/d847ac22497b4826889f/?dl=1"), ("photo", "photo.tgz", "https://cloud.tsinghua.edu.cn/f/458ad21483da4a45935b/?dl=1"), ("sketch", "sketch.tgz", "https://cloud.tsinghua.edu.cn/f/c892ac2d94a44b1196b8/?dl=1"), ] image_list = { "A": "image_list/art_painting_{}.txt", "C": "image_list/cartoon_{}.txt", "P": "image_list/photo_{}.txt", "S": "image_list/sketch_{}.txt" } CLASSES = ['dog', 'elephant', 'giraffe', 'guitar', 'horse', 'house', 'person'] def __init__(self, root: str, task: str, split='all', download: Optional[bool] = True, **kwargs): assert task in self.image_list assert split in ["train", "val", "all", "test"] if split == "test": split = "all" data_list_file = os.path.join(root, self.image_list[task].format(split)) if download: list(map(lambda args: download_data(root, *args), self.download_list)) else: list(map(lambda file_name, _: check_exits(root, file_name), self.download_list)) super(PACS, self).__init__(root, PACS.CLASSES, data_list_file=data_list_file, target_transform=lambda x: x - 1, **kwargs)
[docs] @classmethod def domains(cls): return list(cls.image_list.keys())

Docs

Access comprehensive documentation for Transfer Learning Library

View Docs

Tutorials

Get started for Transfer Learning Library

Get Started

Paper List

Get started for transfer learning

View Resources