Shortcuts

Source code for tllib.vision.datasets.segmentation.synthia

"""
@author: Junguang Jiang
@contact: JiangJunguang1123@outlook.com
"""
import os
from .segmentation_list import SegmentationList
from .cityscapes import Cityscapes
from .._util import download as download_data


[docs]class Synthia(SegmentationList): """`SYNTHIA <https://synthia-dataset.net/>`_ Args: root (str): Root directory of dataset split (str, optional): The dataset split, supports ``train``. data_folder (str, optional): Sub-directory of the image. Default: 'RGB'. label_folder (str, optional): Sub-directory of the label. Default: 'synthia_mapped_to_cityscapes'. mean (seq[float]): mean BGR value. Normalize the image if not None. Default: None. transforms (callable, optional): A function/transform that takes in (PIL image, label) pair \ and returns a transformed version. E.g, :class:`~tllib.vision.transforms.segmentation.Resize`. .. note:: You need to download GTA5 manually. Ensure that there exist following directories in the `root` directory before you using this class. :: RGB/ synthia_mapped_to_cityscapes/ """ ID_TO_TRAIN_ID = { 3: 0, 4: 1, 2: 2, 21: 3, 5: 4, 7: 5, 15: 6, 9: 7, 6: 8, 16: 9, 1: 10, 10: 11, 17: 12, 8: 13, 18: 14, 19: 15, 20: 16, 12: 17, 11: 18 } download_list = [ ("image_list", "image_list.zip", "https://cloud.tsinghua.edu.cn/f/15c4d0f8e62e45d9a6b7/?dl=1"), ] def __init__(self, root, split='train', data_folder='RGB', label_folder='synthia_mapped_to_cityscapes', **kwargs): assert split in ['train'] # download meta information from Internet list(map(lambda args: download_data(root, *args), self.download_list)) data_list_file = os.path.join(root, "image_list", "{}.txt".format(split)) super(Synthia, self).__init__(root, Cityscapes.CLASSES, data_list_file, data_list_file, data_folder, label_folder, id_to_train_id=Synthia.ID_TO_TRAIN_ID, train_id_to_color=Cityscapes.TRAIN_ID_TO_COLOR, **kwargs) @property def evaluate_classes(self): return [ 'road', 'sidewalk', 'building', 'traffic light', 'traffic sign', 'vegetation', 'sky', 'person', 'rider', 'car', 'bus', 'motorcycle', 'bicycle' ]

Docs

Access comprehensive documentation for Transfer Learning Library

View Docs

Tutorials

Get started for Transfer Learning Library

Get Started

Paper List

Get started for transfer learning

View Resources